В главе 2 мы отмечали, что в ранних программах искусственного интеллекта отчетливо прослеживалась тенденция использовать по возможности единообразные методы решения проблем. Логические рассуждения строились на основе небольшого количества предположений или аксиом, а множество правил, применяемых для формирования нового состояния проблемы, также было невелико. Такие классические области искусственного интеллекта, как игры и доказательство теорем, являются формальными системами, которые по самой своей сути годятся для подобной комбинации логического анализа и эвристического поиска. Хотя в подавляющем большинстве экспертных систем применяется большое количество правил, специфичных для определенной предметной области, и используются разнообразные методы решения проблем, способы поиска и организации логического вывода, по сути, не очень отличаются от тех, что использовались в ранних программах искусственного интеллекта.
Например, в процессе работы производящей системы представление состояния проблемы в рабочей памяти последовательно изменяется, все более приближаясь к состоянию, характеризующему искомое решение. Такой пошаговый процесс очень напоминает последовательность ходов, дозволенных правилами игры, а отличие заключается в основном в семантике используемых правил. Программа игры в шахматы, основанная на знаниях, должна опираться не только на правила выполнения ходов, но и на информацию о стратегии, типовых ситуациях на доске, способах распознавания стадий игры (дебют, миттельшпиль или эндшпиль) и т.д.
Существует, однако, множество рутинных задач, выполняемых человеком, которые не вписываются в эту парадигму. Трудно себе представить, что, решая задачу, куда пойти сегодня вечером (в какой ресторан или кинотеатр), человек сознательно или подсознательно выполняет логический анализ или эвристический поиск.